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Abstract. We calculate the string tension, deconfinement transition temperature and bulk thermodynamic
quantities of the SU(3) gauge theory using tree level and tadpole improved actions. Finite temperature
calculations have been performed on lattices with temporal extent Nτ = 3 and 4. Compared to calculations
with the standard Wilson action on this size lattices we observe a drastic reduction of the cut-off dependence
of bulk thermodynamic observables at high temperatures. In order to test the influence of improvement
on long-distance observables at Tc we determine the ratio Tc/

√
σ. For all actions, including the standard

Wilson action, we find results which differ only little from each other. We do, however, observe an improved
asymptotic scaling behaviour for the tadpole improved action compared to the Wilson and tree level
improved actions.

1 Introduction

Tree level and tadpole improved actions have been shown
to yield a substantial reduction of cut-off dependences in
the calculation of thermodynamic properties of the SU(3)
gauge theory [1,2]. In the high (infinite) temperature limit
this is quite evident already from a perturbative calcula-
tion of the pressure (p) or energy density (ε). In this limit
high momentum modes give the dominant contribution to
these observables. An improvement of the discretization
scheme for the Euclidean action at short distances will
thus naturally lead to a better representation of the ideal
gas, Stefan-Boltzmann law on lattices with finite temporal
extent Nτ . However, even at Tc the improved actions lead
to a reduced cut-off dependence for some observables. Cal-
culations of the surface tension or the latent heat of the
first order deconfinement transition, for instance, show a
strong reduction of the cut-off dependence on lattices with
temporal extent Nτ = 3 and 4. In this case it also has been
found that the remaining cut-off dependence on coarse lat-
tices is weaker for a tadpole improved action than for a
tree-level improved action [2].

At high temperature the variation of p/T 4 or ε/T 4 with
temperature is small. Both observables only slowly ap-
proach the ideal gas limit, which is consistent with the ex-
pectation that thermodynamics depends on a running cou-
pling that varies logarithmically with temperature. The
numerical simulations performed in a given discretization
scheme at finite temperature are therefore particularly
sensitive to a correct representation of the infinite temper-
ature limit. An accurate determination of the temperature
scale itself is, however, not needed for the observation of
the dramatic improvement in approaching the continuum
Stefan-Boltzmann limit at infinite temperature. This has
been utilized in the calculations presented in [1] where

the temperature scale has been fixed using an effective
coupling scheme combined with the asymptotic form of
the SU(3) β-function [3]. At temperatures close to the de-
confinement transition, however, thermodynamic observ-
ables like p/T 4 vary rapidly. A comparison of the improve-
ment achieved with different actions in this temperature
regime requires an accurate determination of the temper-
ature scale. For some fixed point actions this has been
done by determining the critical temperature on lattices
with different temporal extent [4]. Using calculations of Tc

to set the scale has, however, the disadvantage that T/Tc

gets to be known only at a few discrete values. We will use
here the string tension to define a continuous temperature
scale, T/

√
σ, for thermodynamic observables. This also is

needed for the determination of thermodynamic observ-
ables like the energy density, which require the knowledge
of the SU(3) β-function, i.e., the derivative of the bare
coupling with respect to the cut-off in the non-asymptotic
regime.

In this paper we analyze the heavy quark potential
with tree level and tadpole improved actions. From the
potential the string tension is extracted in order to define
a temperature scale, T/

√
σ. This in turn is used in a study

of the thermodynamics of the SU(3) gauge theory. In the
next section we discuss our calculations of the heavy quark
potential and the determination of the string tension. The
application of the resulting β-function for thermodynamic
calculations is presented in Sect. 3. Section 4 contains our
conclusions.

2 String tension
In our calculations we use two different improved actions
for the SU(3) gauge theory. These actions include in addi-
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Table 1. Tadpole improvement factors for the action S(1,2)

defined in (2.1)

β 1 − 〈W 1,1〉 u2
0

3.80 0.463838( 182 ) 0.681057
4.00 0.511237( 275 ) 0.715008
4.20 0.560142( 238 ) 0.748427
4.50 0.613736( 130 ) 0.783413
5.00 0.664764( 114 ) 0.815330
6.00 0.730540( 74 ) 0.854716

tion to the standard 1× 1 Wilson loop an additional 1× 2
or 2 × 2 loop, respectively,

S(1,2) =
∑

x,ν>µ

(
5
3
W 1,1

µ,ν(x) − 1
6u2

0
W 1,2

µ,ν(x)
)

,

S(2,2) =
∑

x,ν>µ

(
4
3
W 1,1

µ,ν(x) − 1
48u4

0
W 2,2

µ,ν(x)
)

. (2.1)

Here u0 denotes a tadpole improvement factor which we
have chosen to be defined through the plaquette expecta-
tion value [5], i.e., u0 ≡ (

1−〈W 1,1
µ,ν(x)〉)1/4. The tree level

improved actions are obtained for u0 ≡ 1. The high tem-
perature ideal gas limit for these actions has been analyzed
previously [1] and first calculations of the pressure using
the action S(2,2) have been presented there. The analy-
sis of the infinite temperature ideal gas limit suggests, in
fact, that the (1,2)-action is superior to the (2,2)-action.
Although the leading O(a2) corrections are eliminated in
both cases, it turns out that the remaining higher order
contributions are much smaller for the (1,2)-action.

In order to calculate the string tension from the long
distance part of the heavy quark potential we have per-
formed simulations of the SU(3) gauge theory on lattices
of size 164 and 244 at several values of the gauge cou-
pling β = 6/g2. The heavy quark potential has been ex-
tracted from smeared Wilson loops following closely the
smearing approach described in [6], i.e., Wilson loops are
constructed from smeared links which are obtained by it-
erating the replacement process

Uµ(x) → Uµ(x) + γ
∑
ν 6=µ

Uν(x)Uµ(x + ν̂)U†
ν (x + µ̂) (2.2)

several times. Some tests have been performed to find op-
timal values for the smearing parameter γ for the range
of couplings explored here. The value γ varies between 0.2
and 0.8. This allows to achieve a reasonable large overlap
with the ground state already after about 10 to 15 smear-
ing steps1. The potential at distance R is then determined
from the asymptotic behaviour of smeared Wilson loops,
W (R, L),

V (R) = lim
L→∞

ln
(

W (R, L)
W (R, L + 1)

)
. (2.3)

1 Details on the optimization of our smearing procedure can
be found in [7]

Table 2. Coefficient of the Coulomb-like term obtained from
3 parameter fits to the heavy quark potential which have been
calculated with tree level and tadpole improved (1,2)-actions
and tree level improved (2,2) action. R0.25fm is the distance in
lattice units corresponding to a physical value of 0.25 fm and
R∗

min is the minimal distance used in the fits to the potential
for the determination of α̂. The values of alpha and the errors
have been calculated in the same way as for the string tension
according to (2.5)

Tree-level improved (1,2)-action

N3
σNτ β R0.25fm R?

min α̂

164 4.300 1.98 2.828 -0.318 (82)
164 4.400 2.34 2.828 -0.335 (68)
164 4.600 2.97 3.0 -0.290 (36)
164 4.800 4.11 4.0 -0.229 (76)
244 5.000 4.79 5.0 -0.284 (30)

Tadpole improved (1,2)-action

N3
σNτ β R0.25fm R?

min α̂

164 4.600 1.96 2.828 -0.310 (61)
164 4.800 2.53 2.828 -0.262 (42)
244 5.100 3.74 4.0 -0.288 (40)
244 5.250 4.13 4.24 -0.316 (112)
244 5.400 4.76 5.0 -0.212 (54)

Tree level improved (2,2)-action

N3
σNτ β R0.25fm R?

min α̂

244 4.600 1.98 2.828 -0.299 (45)
244 4.800 2.76 2.828 -0.296 (21)
244 5.000 3.70 4.0 -0.274 (22)
244 5.200 4.85 5.0 -0.271 (47)
244 5.400 6.43 5.0 -0.289 (29)
244 5.600 8.10 5.0 -0.266 (22)

Typically, for each value of the gauge coupling we have an-
alyzed Wilson loops on 300 configurations which were sep-
arated by 10 updates performed with an over-relaxed heat
bath algorithm (1 update ≡ 4 over-relaxation steps fol-
lowed by 1 heat bath step). In the case of the (1,2)-action
we also investigated the effect of tadpole improvement. For
this purpose we have first determined self-consistently the
factor u0 at a few values of the gauge coupling. These num-
bers are given in Table 1. Spline interpolations of these
values have then been used for simulations at other values
of the gauge coupling. Calculations of Wilson loops have
been performed at 10 to 15 values of the gauge coupling.
We generally observe that the ratios of smeared Wilson
loops become, within errors, independent of L already for
rather small values, i.e., for L > Lmin ' (2 − 5) for large
R. The potential has then been obtained from a weighted
average of the logarithm of ratios W (R, L)/W (R, L + 1)
with L > Lmin. These calculations have been performed
on lattices of size 164, except for the largest values of the
gauge coupling where calculations have been performed
on a 244 lattice. Similar results have been obtained with
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Fig. 1. The difference between the calculated potentials and
the best fit obtained with fixed α̂ in units of

√
σ versus R

√
σ.

Shown are results for the tree level improved (2,2)-action (a)
and the tadpole improved (1,2)-action (b) for different values
of the gauge coupling. Tree level results for the latter action
look similar

the tree level improved action S(2,2) on lattices of size 244.
The potentials have then been fitted to the ansatz

V (R) = V0 +
α̂

R
+ σ̂R , (2.4)

for distances R > Rmin in order to extract the string
tension. For large values of R, roughly Ra > 1/4fm [8],
the coefficient of the Coulomb-like term is expected to
be determined by string fluctuations, α̂ = −π/12 [9]. In-
deed, for β corresponding to a lattice spacing smaller than
a ≈ 0.13fm we find values for α̂ which are consistent with
this (Table 2).

Since we are interested in the long distance behaviour
of the potential we followed the strategy to fix the coef-
ficient of the Coulomb-like term for the determination of
the string tension. The minimal value of Rmin was chosen
to be the maximum of Ra = 0.25fm and R = 2

√
2, so

that distortions of rotational symmetry which are present
at small distances are not large. This approach was com-
pared to a systematic increase of Rmin until stable results
have been obtained for σ̂. Typically this was the case for
R∗

min>∼ 1/(2
√

σ̂) i.e. R∗
mina>∼ 0.25fm. We then have further

increased Rmin and have averaged the results for σ̂ ob-
tained from several fits with Rmin > R∗

min in order to min-

imize remaining distortion effects resulting from missing
rotational invariance of the potential at these distances.
Since the results for σ̂ at distances larger than R∗

min agree
within errors we calculated the mean value according to
the fit formula of a constant, but modified the error for-
mula by introducing a factor

√
N which takes into account

that the different values of σ̂ are strongly correlated.

σ̂ =


 ∑

R̂min≥R̂?
min

σ̂(R̂min)
(∆σ̂(R̂min))2




·

 ∑

R̂min≥R̂?
min

1
(∆σ̂(R̂min))2




−1

∆σ̂ =


 1

N

∑
R̂min≥R̂?

min

1
(∆σ̂(R̂min))2




− 1
2

. (2.5)

The resulting values for the string tension for the differ-
ent actions are given in Table 3 and in Table 4. Also given
there are the minimal values Lmin and R∗

min used to ex-
tract and fit the potential for a given value of β. In the
last column we show the values of σ̂ obtained from the 3
parameter fit of the potential (2.4). Except for β = 4.400
for the tree level improved (1,2) and β = 4.500 for the
tree level improved (2,2) action all values of the string
tensions obtained from 2 parameter fits agree within er-
rors with the ones from 3 parameter fits. The χ2 of the
fits is comparable.

In Fig. 1 we show the difference between the calculated
potential and the best fit obtained with α̂ = −π/12. Re-
sults are shown for the tree level improved (2,2)-action and
the tadpole improved (1,2)-action. All fits have been per-
formed for distances R

√
σ̂>∼ 0.5. We note that the agree-

ment between the numerical data and the fit generally re-
mains good at distances smaller than the fitting interval.
For smaller values of β we observe, however, a scattering
of the data for R

√
σ̂ < 0.5 due to the lack of rotational

invariance. This effect becomes smaller for larger values of
β, i.e., closer to the continuum limit. For large values of β
the potential can also be obtained at shorter physical dis-
tances. Here we clearly observe that the potential at small
distances would prefer a larger coupling for the Coulomb
term than used in our fit. This is reflected in the increase
of Vdata − Vfit at short distances.

2.1 Deviations from asymptotic scaling

Improved actions depend on several couplings for the dif-
ferent Wilson loops appearing in the action. Through the
specific choice of these couplings a particular trajectory in
a multi-dimensional parameter space is defined on which
the continuum limit is approached. Although the improve-
ment scheme for the actions does not aim at improving
the approach to asymptotic scaling we may test in how
far the scaling behaviour is modified through the specific
choice of a trajectory. The results for the string tension
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Table 3. String tension obtained from 2 and 3 parameter fits to
the heavy quark potential which have been calculated with tree
level and tadpole improved (1,2)-actions. Lmin is the minimal
extent of smeared Wilson loop W (R, L) used to extract the
potential at distance R. R∗

min is the minimal distance used in
fits to the potential for the determination of the string tension

Tree-level improved (1,2)-action

N3
σNτ β Lmin R?

min σ̂2par σ̂3par

164 3.850 1 2.828 0.35173 (328) 0.35789 (1327)
164 4.000 2 2.828 0.19923 (162) 0.19748 (836)
164 4.040 2 2.828 0.17542 (104) 0.17288 (457)
164 4.100 3 2.828 0.14234 (165) 0.13871 (842)
164 4.150 3 2.828 0.11423 (131) 0.11079 (586)
164 4.300 4 2.828 0.07265 (107) 0.06987 (489)
164 4.400 4 2.828 0.05412 (51) 0.05055 (182)
164 4.600 4 3.0 0.03201 (43) 0.03105 (182)
164 4.800 5 4.0 0.01634 (48) 0.01734 (257)
244 5.000 6 5.0 0.01188 (18) 0.01104 (84)

Tadpole improved (1,2)-action

N3
σNτ β Lmin R?

min σ̂2par σ̂3par

164 4.050 1 2.828 0.42159 (217) 0.42216 (1462)
164 4.150 2 2.828 0.29927 (340) 0.32253 (3625)
164 4.185 2 2.828 0.27153 (216) 0.25530 (1645)
164 4.200 2 2.828 0.26205 (198) 0.25367 (1124)
164 4.250 2 2.828 0.21829 (176) 0.21355 (893)
164 4.300 2 2.828 0.18343 (103) 0.17852 (496)
164 4.400 3 2.828 0.12994 (154) 0.12581 (754)
164 4.500 3 2.828 0.09633 (53) 0.09536 (252)
164 4.600 4 2.828 0.07154 (90) 0.06839 (366)
164 4.800 4 2.828 0.04315 (55) 0.04296 (235)
244 5.100 6 4.0 0.01967 (22) 0.01906 (87)
244 5.250 6 4.24 0.01604 (53) 0.01513 (233)
244 5.400 6 5.0 0.01227 (20) 0.01308 (97)

given in Table 3 and 4 can be used to analyze the relation
between the bare gauge coupling and the lattice cut-off,
β(a) ≡ 6/g2(a). In the case of the Wilson action this has
been analyzed in quite some detail [10].

In a most straightforward way the deviations from
asymptotic scaling become visible when one divides the
results obtained for

√
σa by the universal 2-loop form of

the β-function. This yields
√

σ/ΛL. The perturbative ex-
pansion of the tadpole improved (1,2)-action coincides up
to O(g2) with that of the tree level improved (1,2)-action
with a modified gauge coupling β̃ ≡ β(1+α2g

2/3), where
α2 = −0.366263(N2−1)/4N denotes the O(g2) expansion
coefficient for the plaquette expectation value calculated
with the tree level improved action [1]. From this we ob-
tain the ratio of Λ-parameters for tree level and tadpole
improved (1,2)-actions,

Λ
(1,2)
tad

Λ
(1,2)
tree

= eα2/6b0 , (2.6)

Table 4. String tension obtained from 2 and 3 parameter fits
to the heavy quark potential which have been calculated with
the tree level improved (2,2)-action on lattices of size 244. Lmin

and R∗
min are explained in Table 3. For the last two β values

we used a smaller value of R∗
min = 5.00 in the 3 parameter fit

to obtain stable results

Tree-level improved (2,2)-action

β Lmin R?
min σ̂2par σ̂3par

4.300 3 2.828 0.24547 (981) 0.31077 (7679)
4.380 3 2.828 0.17401 (278) 0.15589 (1534)
4.396 3 2.828 0.16334 (228) 0.16059 (1366)
4.400 3 2.828 0.16052 (207) 0.16778 (1474)
4.406 3 2.828 0.15603 (186) 0.14942 (1257)
4.430 3 2.828 0.13882 (141) 0.13238 (900)
4.450 4 2.828 0.12787 (102) 0.12698 (1949)
4.500 4 2.828 0.10422 (53) 0.08755 (867)
4.550 4 2.828 0.08636 (83) 0.08431 (461)
4.600 4 2.828 0.07060 (48) 0.06957 (236)
4.800 4 2.828 0.03606 (13) 0.03536 (57)
5.000 4 4.0 0.02046 (13) 0.02021 (48)
5.200 5 5.0 0.01169 (16) 0.01166 (76)
5.400 5 7.0(5.0) 0.00669 (14) 0.00642 (46)
5.600 5 8.0(5.0) 0.00426 (14) 0.00425 (35)
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Fig. 2.
√

σ/ΛMS versus
√

σa for various actions. Shown are
results for

√
σa/R(g2), normalized to ΛMS. Here R(g2) denotes

the 2-loop β-function. In the case of the (2,2)-action the ratio
of Λ

(2,2)
tree /ΛMS was not known to us and we have, therefore, used

an arbitrary normalization factor of 0.15. The horizontal line
indicates the value of the continuum extrapolation of

√
σ/ΛMS

for the Wilson action taken from [6]

with b0 = 11N/48π2. Using also the ratios of lattice Λ-
parameters to ΛMS [11,12] we obtain

√
σ/ΛMS for differ-

ent actions. This is shown in Fig. 2. The numbers are
plotted versus

√
σa in order to be able to compare results

at the same value of the cut-off. The slope of these curves
is an indication for the deviations from asymptotic scal-
ing in the regime of couplings investigated. We note that
the tree level improved (2,2)-action shows similar scaling
violations as the Wilson action while these are reduced
for the tree level and even more for the tadpole improved
(1,2)-actions. A similar behaviour is also obtained from
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calculations of the critical temperature with the tree level
improved (1,2) action [13].

3 Thermodynamics

3.1 Tc/
√

σ

The string tension calculated in the previous section can
be used to fix the temperature scale T/

√
σ = 1/(Nτ

√
σ̂).

In particular, we have calculated the ratio Tc/
√

σ by de-
termining the critical couplings for the different tree level
and tadpole improved actions on lattices with temporal
extent Nτ = 3 and 4. Pseudo-critical couplings on finite
spatial lattices have been determined from the location of
the peak in the Polyakov loop susceptibility [3]. For the
tree level and tadpole improved (1,2)-actions we, further-
more, have performed a detailed study of the finite volume
dependence of the critical couplings on lattices with tem-
poral extent Nτ = 4 and Nσ = 16, 24 and 32 [2]. In these
cases the critical couplings have been extrapolated to the
infinite volume limit using the ansatz

βc(Nτ , Nσ) = βc(Nτ ,∞) − h

(
Nτ

Nσ

)3

(3.1)

which is appropriate for first order phase transitions. We
note that in the continuum limit the difference βc(Nτ ,∞)−
βc(Nτ , Nσ) is proportional to the finite volume shift in the
critical temperature, i.e. (Tc,∞ − Tc,V )/Tc,∞. In this limit
(3.1) thus characterizes a physical property of QCD in a
finite volume, the finite size dependence of peaks in sus-
ceptibilities which develop into a singularity in the infinite
volume limit. Equation (3.1) then reads

Tc,∞ − Tc,V

Tc,∞
=

4π2

33
h

V T 3 (3.2)

The parameter h thus is independent of the lattice action
up to finite cut-off corrections. Given the current uncer-
tainties in the numerical values of h these finite cut-off
corrections can, however, not be disentangled from the
statistical errors.
We find for the tree level and tadpole improved (1,2)-
actions proportionality factors h which are consistent with
each other as well as with earlier results obtained with
other actions,

h =




0.082 (32) (1,1) Wilson action [15], Nτ = 4
0.072 (77) (1,1) Wilson action [15], Nτ = 6
0.101 (34) (1,2) tree level action, Nτ = 4
0.068 (45) (1,2) tadpole action, Nτ = 4
0.122 (54) RG action [18], Nτ = 3
0.133 (63) RG action [18], Nτ = 4

(3.3)
The calculated critical couplings as well as the extrap-
olations to the infinite volume limit are summarized in
Table 5 for the different actions. We note that our results
for the tree level improved (1,2)-action are consistent with
those of [13]. In Table 5 we also give results from [13] for

Table 5. Critical couplings for the tree level and tadpole im-
proved actions. In each case we give the result for the largest
spatial lattice on which simulations have been performed and
the infinite volume extrapolation. Details on the determination
of critical couplings for the (1,2)-actions for Nτ = 3 and 4 on
lattices with different spatial extent are given in [2]. The finite
lattice results for Nτ = 5 and 6 are taken from [13]. Infinite
volume extrapolations are based on (3.1) with h = 0.093, ex-
cept for the case of the Nτ = 4 (1,2)-actions where a detailed
finite volume scaling analysis has been performed in [2]. The
second error on βc in the infinite volume limit is the systematic
error due to the error on h. In the last column we also give the
ratio Tc/

√
σ. The errors on Tc/

√
σ due to the error on βc and

on
√

σ̂ have been added

Tree level improved (1,2)-action

N3
σ Nτ βc Tc/

√
σ

123 3 3.9079 (6)
(∞)3 3 3.9094 (6)(3) 0.630 (5)

323 4 4.0729 (3)
(∞)3 4 4.0730 (3) 0.636 (4)

203 5 4.19963 (14)
(∞)3 5 4.20108 (14)(28) 0.631 (5)

243 6 4.31466 (24)
(∞)3 6 4.31611 (24)(28) 0.632 (5)

Tree level improved (2,2)-action

N3
σ Nτ βc Tc/

√
σ

243 4 4.3995 (2)
(∞)3 4 4.3999 (2)(1) 0.625 (4)

Tadpole improved (1,2)-action

N3
σ Nτ βc Tc/

√
σ

123 3 4.1868 (4)
(∞)3 3 4.1882 (4)(3) 0.643 (3)

323 4 4.3522 (4)
(∞)3 4 4.3523 (4) 0.639 (6)

larger values of Nτ and use the ansatz of (3.1) to extrapo-
late to the critical couplings on an infinite lattice. For the
constant h we use in these cases the weighted average of
the values given in (3.3), i.e., h = 0.093 (18).

In order to extract the critical temperature in units
of the square root of the string tension we determine σ̂
at βc(Nτ ,∞) from an interpolation with an exponential
ansatz, σ̂ = A exp(−β/2Nb0+f(β)), where f(β) is a third
order polynomial in β−1. The results for Tc/

√
σ are shown

in Table 5 and in Fig. 3.
The Wilson action βc(Nτ,∞) for Nτ =4 and 6 are taken

from [15]. For Nτ = 8 and Nτ = 12 we performed the in-
finite volume extrapolation based on (3.1) with h = 0.093
by using βc from [3]. Recently there has been a new mea-
surement of the string tension for the Wilson gauge action
by Edwards et al. [14]. We used their “best” parameter-
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Table 6. Critical couplings for the Wilson gauge action. We
give the results for the infinite volume extrapolations for Nτ =
4 and 6 from [15] and for Nτ = 8 and 12 based on (3.1) with
h = 0.093, where the values for βc on finite lattices are taken
from [3]. The second error given is the systematic error due
to the uncertainty in the extrapolation. In the last column we
give the ratio Tc/

√
σ using the string tension parameterization

given in [14].

Wilson action

N3
σ Nτ βc Tc/

√
σ

(∞)3 4 5.6925 (2) 0.627 (6)
(∞)3 6 5.8941 (5) 0.632 (11)
(∞)3 8 6.0624 (9) (3) 0.629 (6)
(∞)3 12 6.3380 (13) (10) 0.630 (5)

Table 7. Critical temperature in units of
√

σ on lattices with
temporal extent Nτ = 4. Infinite volume extrapolations for
the critical couplings have been performed in all cases. Further
details on the data for the RG-improved action can be found
in [18]

Action βc Tc/
√

σ

standard Wilson 5.69254 (24) 0.627 (6)
(2,2) (tree level improved) 4.3999 (3) 0.625 (4)
(1,2) (tree level improved) 4.0730 (3) 0.636 (4)
(1,2) (tadpole improved) 4.3523 (4) 0.639 (6)
(1,2) (RG improved) 2.2879 (11) 0.653 (6)(1)

ization of the string tension to determine
√

σ̂ at βc. The
results are displayed in Table 6 and Fig. 3. The strong
cut-off effect so far reported for Tc/

√
σ is no longer visible

in these new results 2. For the continuum extrapolation
we find the following value

Tc√
σ

= 0.630 ± 0.005 , (3.4)

which is consistent with all ratios Tc/
√

σ extracted by us
with improved actions on Nτ ≥ 4 lattices (see Table 5).

In Fig. 3 and Table 7 we give the results obtained from
calculations with different actions. This also includes re-
sults obtained with a renormalization group improved ac-
tion [18]. The latter does lead to a slightly larger value
for Tc/

√
σ. However, also in this case the cut-off depen-

dence is comparable to the other actions. This suggests
that the difference between the results obtained with the
RG-improved action in [18] and the results presented here
is mainly due to differences in the analysis of the heavy

2 Previous estimates of Tc/
√

σ for the Wilson action at low
β were based on preliminary results for the string tension [16]
which propagated through the literature. Published values [17]
and recent high statistics results [14] for the string tension are
lower than the preliminary ones and thus lead to the increase
in Tc/

√
σ at Nτ = 4 and 6
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Fig. 3. The critical temperature in units of the square root
of the string tension for various actions versus the square of
the cut-off. The Nτ = 6 point of the tree level (1,2) improved
action has been slightly shifted to make it distinguishable from
the Wilson action point

quark potential rather than due to differences in the im-
provement scheme. In general we find that the cut-off de-
pendence in the ratio Tc/

√
σ is quite small for all actions.

We also note that the results on Nτ = 3 lattices are in
good agreement with those obtained on larger lattices.
This is quite different from the surface tension analysis [2].
It may, however, indicate that the latter is more sensitive
to high momentum modes than the ratio Tc/

√
σ, which is

also reflected in the fact that the Wilson action does not
show large finite cut-off effects in Tc/

√
σ whereas there

are large finite cut-off dependences in the surface tension.

3.2 Pressure of the SU(3) gauge theory

The temperature dependence of the pressure can be ob-
tained from an integration of action densities, 〈S〉, calcu-
lated at zero and non-zero temperature, respectively3,

p

T 4

∣∣∣β
β0

= N4
τ

∫ β

β0

dβ′(〈S̃〉0 − 〈S̃〉T ) . (3.5)

Here β0 is a value of the coupling constant below the phase
transition point at which the pressure can safely be ap-
proximated by zero. The subscripts 0 and T refer to cal-
culations of the action expectation values on the zero tem-
perature and non-zero temperature lattices, respectively.
We also note that in the case of tadpole improved actions
the action itself depends implicitly on the gauge coupling
through the tadpole factor u0(β). This has to be taken

3 We refer to [3,19] for more details on the formalism
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Fig. 4. Pressure of the SU(3) gauge theory calculated with
the Wilson action and different improved actions on Nτ = 4
lattices (upper figure). The lower figure shows a comparison
of calculations with tree level and tadpole improved actions
on Nτ = 3 and 4 lattices. Also shown there are results from
a calculation with a fixed point action (triangles). The arrows
indicate the ideal gas result in the continuum limit. For com-
parison we also show the continuum extrapolation obtained
from calculations with the Wilson action [3]

into account in the calculation of derivatives with respect
to β. We therefore have introduced in (3.5) the quantity
S̃ defined as

S̃ = S − β
dS

dβ
. (3.6)

Using the string tension values given in Table 3 and 4 and
normalizing these to the string tension at βc, we obtain
the temperature in units of Tc. The temperature at in-
termediate values of the coupling has been obtained from
an interpolation. With this we can reanalyze also the re-
sults for the pressure obtained for the tree level improved
(2,2)-action given in [1]. It simply amounts to a modifica-
tion of the temperature scale, i.e. the ordinate of Fig. 3
in [1]. While this has practically no consequences at high
temperature, it leads to visible shifts close to Tc. In Fig. 4
we show the results of calculations with improved actions
on 163 × 4 lattices. These are compared to the continuum
extrapolation obtained from calculations with the Wilson
action on lattices with temporal extent Nτ = 4, 6 and
8 [3]. We find that all improved action calculations are
close to the continuum extrapolation, while the standard
Wilson calculation on a Nτ = 4 lattice clearly deviates
substantially.
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Fig. 5. The difference (ε − 3p)/T 4 versus T/Tc calculated on
lattices with temporal extent Nτ = 4 for various improved
actions. The results are compared to a calculation with the
Wilson action on a Nτ = 8 lattice. In the lower figure the peak
of (ε − 3p)/T 4 is shown in detail

We furthermore have calculated the pressure for the
tree level and tadpole improved (1,2)-actions on a lattice
of size 123 × 3. These results are shown in Fig. 4b. Here
we also show the result of a calculation using a fixed point
action for Nτ = 3 [4]. These are in good agreement with
the continuum extrapolation obtained from the Wilson
action and seem to be closer to the result obtained with
the tadpole improved action than the tree level result. For
temperatures in the range (2 − 3)Tc the tadpole action
yields about 10% smaller values for the pressure than the
tree level action, although both approach the same infinite
temperature limit. We also note that we do not observe
any significant cut-off dependence when comparing calcu-
lations on lattices with temporal extent Nτ = 3 and 4
despite the fact that the cut-off dependence in the infinite
temperature limit leads to about 15% differences in the
Stefan-Boltzmann limit. This is, to some extent, in accor-
dance with the analysis of the Wilson action, where we
noted already that the cut-off distortion in this tempera-
ture range is only half as large as expected on the basis of
calculations for the ideal gas limit [3]. It seems that these
are further reduced in calculations with improved actions.
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Using the temperature scale defined by the string ten-
sion calculations we also can extract the β-function,
adβ/da, outside the validity regime of the asymptotic 2-
loop form, i.e., in the coupling range explored here. With
this, further thermodynamic observables can be extracted.
In particular, we obtain for the difference between the en-
ergy density, ε, and 3p,

ε − 3p

T 4 =
(

Nτ

Nσ

)3(
a
dβ

da

)[
〈S̃〉0 − 〈S̃〉T

]
. (3.7)

In Fig. 5 we compare the result obtained with tree level
and tadpole improved actions on lattices with temporal
extent Nτ = 4 with corresponding results obtained with
the Wilson action for Nτ = 8. In the case of the Wilson
action it has actually been observed that results for Nτ =
6 and 8 coincide within errors and may thus be taken
as the continuum limit result [3]. The good agreement
we find here with the Wilson action calculation confirms
this observation, i.e., cut-off effects are indeed small in
(ε−3p)/T 4. In fact, the strong cut-off effects present in the
ideal gas limit cancel exactly in this quantity, which in the
high temperature limit is O(g4(T )). The good agreement
between results obtained with different actions also is an
excellent consistency check for the determination of the
temperature scales and the analysis performed here.

4 Conclusions

We have analyzed thermodynamic properties of the SU(3)
gauge theory using tree level and tadpole improved ac-
tions. In general we find that the use of improved actions
does lead to a significant reduction of the cut-off depen-
dence in observables like the energy density, the pressure
and even the surface tension at Tc. The improvement has,
however, little effect on the calculation of long-distance
quantities like Tc/

√
σ. On the other hand we do observe

an improved scaling behaviour for the tadpole improved
action. There also might be a slight advantage in the use
of the tadpole improved action for the analysis of bulk
thermodynamic observables like the pressure. However, at
present this cannot be further quantified within the accu-
racy of our calculations.

It now seems that the systematic cut-off dependencies
in calculations of thermodynamic observables (Tc, equa-
tion of state, latent heat, surface tension,..) are well under
control with presently used improved actions. Remaining
ultra-violet cut-off dependences, which without doubt still
are present, are hidden by statistical errors and/or in-
accuracies in the determination of the observables. The
latter result, for instance, also from infra-red cut-off ef-
fects. This is true also for the determination of the string
tension, which is sensitive to the specific form of the fit

used to analyze the heavy quark potential at distance
R ' (0.25 − 1) fm. Such ambiguities are likely to be the
origin for the currently existing discrepancy between the
calculations presented here and in [18]. However, also the
thermodynamic calculations are still sensitive to infra-red
effects. While the finite volume effects are quite well under
control for the determination of the critical temperature
they certainly have to be analyzed in more detail for the
discontinuities (surface tension, latent heat) at Tc.
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